
Resource 
Optimization in 
Kubernetes
Carlos Sanchez, Adobe
@csanchez



Cloud Engineer at Adobe Experience Manager Cloud Service

Author of Jenkins Kubernetes plugin

Long time OSS contributor at Jenkins, Apache Maven, Puppet,…

@csanchez



Adobe Experience Manager (AEM)

An existing distributed Java OSGi application
Using OSS components from Apache Software 
Foundation

A huge market of extension developers
Writing modules that run in-process on AEM



AEM on Kubernetes

Running on Azure
25+ clusters and growing
Multiple regions: US, Europe, Australia, Japan, more 
coming
Customers can run their own code
Cluster permissions are limited for security



AEM on Kubernetes

Using namespaces to provide a scope
• network isolation
• quotas

• permissions



AEM on Kubernetes

Each customer environment is a micro-monolith ™
Multiple teams building services
Need ways to scale that are orthogonal to the dev teams



Resources in Kubernetes

Kubernetes workloads must set resource requests and 
limits:
• Requests: how many resources are guaranteed

• Limits: how many resources can be consumed



Resources in Kubernetes

And are applied to
• CPU: may result in CPU throttling
• Memory: limit enforced, results in Kernel OOM killed

• Ephemeral storage: limit enforced, results in pod 
eviction



Resources in Kubernetes

AEM is a Java application
JVM takes all the memory on startup and manages it
JVM memory use is hidden from Kubernetes, which 
sees all of it as used
JDKs >11 will detect the available memory in the 
container, not the host



Kubernetes Cluster Autoscaler

Automatically increase and reduce the cluster size



Kubernetes Cluster Autoscaler

Based on CPU/memory requests
Some head room for spikes
Multiple scale sets in different availability zones



Kubernetes Cluster Autoscaler

Multiple worker tiers defined as node groups
Max nodes managed at the cluster level
Least waste Scaling Strategy

Selects the node group with the least idle CPU after scale-
up

Savings: 30-50%



Kubernetes Cluster Autoscaler



Kubernetes Cluster Autoscaler



Horizontal Pod Autoscaler

Creating more pods when needed



Horizontal Pod Autoscaler

AEM scales on CPU and http requests per minute (rpm) 
metrics
CPU autoscaling is problematic

Periodic tasks can spike the CPU, more pods do not 
help
Spikes on startup can trigger a cascading effect



Horizontal Pod Autoscaler

AEM needs to be warmed up on startup
rpm autoscaling is better suited
As long as customers don’t have expensive requests

Savings: 50-75%



Horizontal Pod Autoscaler
Number of Pods

RPM



Vertical Pod Autoscaler

Increasing/decreasing the resources for each pod



Vertical Pod Autoscaler

Allows scaling resources up and down for a deployment
Requires restart of pods (automatic or on next start)
Makes it slow to respond, can exhaust resources in busy 
nodes



Vertical Pod Autoscaler

Only used in AEM dev environments to scale down if 
unused
And only for some containers

Savings: 5-15%



Hibernation

Scaling to zero environments not used



Hibernation

Scaling down multiple deployments associated to one 
“AEM environment”
Deleting ingress routes and other objects that may limit 
cluster scale



Hibernation

Cronjob that periodically checks for last access data in 
Prometheus
UI for user to dehibernate

Savings: 60-80%



ARC

Automatic Resource Configuration



ARC

In most clusters services request more cpu/memory than 
used
ARC can transparently reduce cpu/memory 
requirements
Limits are not affected, so side effects are limited, would 
not trigger OOM Killer (likely)



ARC Recommender

ARC recommender leverages historical metrics at the 
deployment level
Can provide recommendations about optimization at 
deployment level based on actual usage



ARC Cluster Ratios

ARC can dial down resource requests at 
cluster/namespace level
Savings: 10-15%



ARC



ARC Recommender

Why ARC and not VPA recommender?
• Full control over recommendation algorithm
• Implementation at more global cluster level with 

deployment level recommendations



Resource Optimization in Kubernetes

From Kubernetes ecosystem: 
Cluster autoscaler, HPA, VPA

Internal:
Hibernation, ARC

At application and infrastructure levels
A combination of them will help you optimize and reduce 
resources used

@csanchez


